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The diagram shows a circle with centre O and radius r. The tangents to the circle at the points A and
B meet at 7, and angle AOB is 2x radians. The shaded region is bounded by the tangents AT and BT,
and by the minor arc AB. The area of the shaded region is equal to the area of the circle.

(a) Show that x satisfies the equation tanx = © + Xx.

(31
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(b) This equation has one root in the interval 0 < x < %7:. Verify by calculation that this root lies
between 1 and 1.4. [2]

(¢) Use the iterative formula e
T tan@

to determine the root correct to 2 decin@ Give the result of each iteration to 4 decimal
places. [3]
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k
The diagram shows the curves y = cosx and y = Tox’ where k is a constant, for 0 < x < %m. The

curves touch at the point where x = p.

1
(a) Show that p satisfies the equation tan p = oo E Q [5]

3
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1
(b) Use the iterative formula p,, | = tan‘l( n ) to determine the value of p correct to 3 decimal

n
places. Give the result of each iteration to 5 decimal places. [3]
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(a) By sketching a suitable pair of graphs, show that the equation x> = 2 + x has exactly one real
root. [2]

(b) Show thatif a seq @given by the iterative formula

4x0 +2
Kns1 = Sxf;——l

ges to the root of the equation in part (a). [2]
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[3]
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1
(a) By sketching a suitable pair of graphs, show that the equation cosecx = 1 +e 2" has exactly two
roots in the interval 0 < x < =. [2]

Xy == sin~ s
with initial value x, = 2, converges 1o one Toots.
Use the formula to determine this_ &0 ect to 2 decimal places. Give the result of each

iteration to 4 decimal places.

[3]
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The diagram shows the curve y = yxcosx, for 0 € x < %n, and its minimum point M, where x = a.
The shaded region between the curve and the x-axis is denoted by R.

: <
(a) Show that a satisfies the equation tana = % [3]

.

1
(b) The sequence of values given b tive formula a,,, = n + tan‘l(

), with initial value

n
X, = 3, converges to a.

Use this formula t
4 decimal places.

a correct to 2 decimal places. Give the result of each iteration to

[3]
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(¢) Find the volume of the solid obtained when the region R is rotated completely about the x-axis.
Give your answer in terms of m. [6]
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The sequence of values given by the iterative formula

20+ 12x
X  =—=,
n+1 33‘;51 +8

with initial value X, = 2, converges to a.

(i) Use the formula to calculate ¢ correct to 4 decimal places. Give the result of each iteration to
6 decimal places. [3]
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2
the curves are perpendicular.
(i) Show thata =4 — \/(2 sin %a). [4]

1 /i
The diagram shows the curves y = 4 cos Lx and y = s for 0 € x <4. When JQ angents to
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(ii) Verify by calculation that a lies between 2 and 3. [2]

places. Give the result of each iteration to 5 decimal pl [3]
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xrad

o

In the diagram, A is the mid-point of the semicircle with centre O and radius r. A circular arc with
centre A meets the semicircle at B and C. The angle OAB is equal to x radians. The area of the shaded
region bounded by AB, AC and the arc with centre A is equal to half the area of the semicircle.

(i) Use triangle OAB to show that AB = 2rcosx.
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(iii) Verify by calculation that x lies between 1 and 1.5. [2]

(iv) Use an iterative formula based on the equation in part (ii) to dete@ect to 3 decimal

places. Give the result of each iteration to 5 decimal places.

[3]
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The diagram shows the curve y = x* — 2x* — 7x — 6. The curve intersects the x-axis at the points (a, 0)
and (b, 0), where a < b. Itis given that b is an integer.

(i) Find the value of b.

(ii) Hence show that a satisfies
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.............................................................................................................................. <.

(iii) Use an iterative formula based on the equation in part (ii) to detergin ect to 3 decimal
places. Give the result of each iteration to 5 decimal places.

(3]
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The curve with equation y = e In(x — 1) has a stationary point when x = p.

(i) Show that p satisfies the equationx = 1 + exp( , where exp(x) denotes e*. [31]

1)
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(ii) Verify by calculation that p lies between 2.2 and 2.6. [2]

(ifii) Use an iterative formula based on the equation in part (i Q}jne p correct to 2 decimal

places. Give the result of each iteration to 4 decimal p [3]
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a
It is given that J X cos %xdx = 3, where the constant a is such that 0 < a < %n.
0
(i) Show that a satisfies the equation
4 —3cos %a
sinza
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(ii) Verify by calculation that a lies between 2.5 and 3. [2]

[3]

places. Give the result of each iteration to 5 decimal p

(iii) Use an iterative formula based on the equation in pa@Qulat&: a correct to 3 decimal
1
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(i) By sketching a suitable pair of graphs, show that the equation In(x + 2) = 4e™ has exactly one
real root. [2]
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(iif) Use the iterative formulax, , = ln( m ) to determine the root correct to 2 decimal places.
Give the result of each iteration to 4 degimal places. [3]
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(i) By sketching suitable graphs, show that the equation e>* = 6 + e™ has exactly one real root. [2]

(ii) Verify by calculation that this root lies between ) [2]
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(iii) Show that if a sequence of values given by the iterative formula

X, = %ln(l +6e'n)
converges, then it converges to the root of the equation in part (i). [2]
O\b
(iv) Use this iterative formula to calculate the root correct t imal places. Give the result of each
iteration to 5 decimal places. [3]
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a
1
The positive constant a is such that J xe 2Vdx = 2.
0

(i) Show that a satisfies the equation a = 21In(a + 2). [5]
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(iii) Use an iteration based on the equation i 1
the result of each iteration to 4 decb . [3]
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Orad

The diagram shows a triangle ABC in which AB = AC = a and angle BAC = 0 radians. Semicircles
are drawn outside the triangle with AB and AC as diameters. A circular arc with centre A joins B
and C. The area of the shaded segment is equal to the sum of the areas of the semicircles.

(i) Show that 8 = 17 +sin#.
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(ii) Verify by calculation that 6 lies between 2.2 and 2.4. [2]

[3]
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1
The curve with equation y = Snx

m has a stationary point at x = p.
X

3
(i) Show that p satisfies the equationlnx =1 + —. [3]
X
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(ii) By sketching suitable graphs, show that the equation in part (i) has only one root. [2]

327

<

L/

Inx
orrect to 2 decimal places.

[3]

formula based on this rearrangement to determine the v:
Give the result of each iteration to 4 decimal places.

o
(iii) It is given that the equation in part (i) can be written in t@& ——. Use an iterative
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(i) By sketching a suitable pair of graphs, show that the equation x> = 3 — x has exactly one real
root. [2]

2 +3
3x +1

0\
(ii) Show that if a sequence of real values given by the iterativ@&

n+1

converges, then it converges to the root of th part (i). [2]
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[3]
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The equation of a curve is ¥y = x1n(8 — x). The gradient of the curve is equal to 1 at only one point,
whenx = a.

(i) Show that a satisfies the equation x = 8 —

In(8 —x)° [3]
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(ii) Verify by calculation that a lies between 2.9 and 3.1. [2]

[3]
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The diagram shows a semicircle with centre O, radius » and diameter AB. The point P on its
circumference is such that the area of the minor segment on AP is equal to half the area of the minor
segment on BP. The angle AOP is x radians.

(i) Show that x satisfies the equation x = %(n: + sinx).
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(ii) Verify by calculation that x lies between 1 and 1.5. [2]

(iii) Use an iterative formula based on the equation in part (i) to deter@ect to 3 decimal

places. Give the result of each iteration to 5 decimal places. *

[3]
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e

o

The diagram shows the curve y = x> cos 2x for 0 < x < %n. The curve has a maximum point at M
where x = p.

1
(i) Show that p satisfies the equation p = %tan‘1 (1—7 ) [3]

(ii) Use the iterative formula p to determine the value of p correct to 2 decimal

places. Give the re t10n to 4 dec1mal places. [3]
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(iii) Find, showing all necessary working, the exact area of the region bounded by the curve and the
X-axis. [5]

335
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The equation cotx = 1 — x has one root in the interval O < x < x, denoted by «.

(i) Show by calculation that « is greater than 2.5. [2]

(ii) Show that, if a sequenc the interval O < x < & given by the iterative formula

es, then it converges to a. [2]
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(iii) Use this iterative formula to determine « correct to 3 decimal places. Give the 1 t of each
iteration to 5 decimal places.
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The equation x> = 3x + 7 has one real root, denoted by a.

(i) Show by calculation that « lies between 2 and 3. [2]
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Two iterative formulae, A and B, derived from this equation are as follows:

W=

xn+1 = (3xn + 7) 2 (A)
xi -7
X = 3 (B)

Each formula is used with initial value x, = 2.5.
(ii) Show that one of these formulae produces a sequence which fails to converge, and use the other

formula to calculate o correct to 2 decimal places. Give the result of each iteration to 4 decimal
places. [4]
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a

1
It is given that J x2lnxdx =2, wherea > 1.
1

(1) Show thata
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(ii) Show by calculation that a lies between 2 and 4. [2]

(iii) Use the iterative formula c:

3

(7+2a2

a .= n
n+l1

31
n
to determine a correct to 3 decimal places. @ result of each iteration to 5 decimal places.
[3]
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The equation x> = 3x> + x> =4 = 0 has one positive root.
(i) Verity by calculation that this root lies between 1 and 2. 2]

(i) Show that the equation can be rearranged in the form
4
x:V(3x+—2—l). [1]
x

(iif) Use an iterative formula based on this rearrangement to determine the positive root correct to
2 decimal places. Give the result of each iteration to 4 decimal places. [3]
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(i) By sketching a suitable pair of graphs, show that the equation
Se ¥ =4/x
has one root. [2]
(ii) Show that, if a sequence of values given by the iterative formula
_ 1%
X1 = zln(x—)
n
converges, then it converges to the root of the equation in part (i). [2]

(iii) Use this iterative formula, with initial value x; = 1, to calculate the root correct to 2 decimal
places. Give the result of each iteration to 4 decimal places. [3]
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P X

The diagram shows the curve y = cosec x for 0 < x < & and part of the curve y = e™*. When x = a, the
tangents to the curves are parallel. e

(i) By differentiating , show that if y = cosecx then g—i = — coseex [3]

sin x

(ii) By equating the gradients of the curves at x = a, show that ‘\

-1 e
a = tan - . 0 (2]
sina
(iii) Verify by calculation that a lies between 1 and @ [2]
(iv) Use an iterative formula based on the egua part (ii) to determine a correct to 3 decimal
places. Give the result of each iteration to 5 al places. [3]

Q"’&
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The curve with equation y = x” cos %x has a stationary point at x = p in the interval 0 < x < 7.
. . . L4
(i) Show that p satisfies the equation tan 5p = 1—7 [3]
(ii) Verify by calculation that p lies between 2 and 2.5. [2]

4

(iii) Use the iterative formula p, | = 2tan”! ( —) to determine the value of p correct to 2 decimal
Py

places. Give the result of each iteration to 4 decimal places. [3]
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(i) By sketching a suitable pair of graphs, show that the equation

1, _1
cosec 3x = 3x+1

has one root in the interval 0 < x < . [2]

(i) Show by calculation that this root lies between 1.4 and 1.6. [2]

(iii) Show that, if a sequence of values in the interval 0 < x < & given by the iterative formula

3
-
X, = 2sin (xn+3)

converges, then it converges to the root of the equation in part (i). [2]

(iv) Use this iterative formula to calculate the root correct to 3 decimal places. the result of each
iteration to 5 decimal places. [3]

2
0&0
Q
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. k
The diagram shows the curves y = xcosx and y = —, where k is a constant, for 0 < x < 27: The curves
x’

touch at the point where x = a.

2
(i) Show that a satisfies the equation tana = pt q [5]

2
(if) Use the iterative formula @, |, = tan™ ( ) to determine a co decimal places. Give the
result of each iteration to 5 decimal places [3]
(iii) Hence find the value of k correct to 2 decimal places [2]
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The diagram shows part of the curve with parametric equations

x =2In(r +2), y=0F+2t+3. e
(i) Find the gradient of the curve at the origin. 6 b [5]

 /
(ii) At the point P on the curve, the value of the parameter is ;{&givan that the gradient of the

curve at P is %

(a) Show thatp = ! 2 [1]
P= 3pP+2

(b) By firstusing aniterative formula based% uation in part (a), determine the coordinates

of the point P. Give the result of i n to 5 decimal places and each coordinate of
P correct to 2 decimal places. [4]

?‘]'PapaCambridge



* jPPapaCambridge y

244. 9709 s15_qp 32 Q: 5

The diagram shows a circle with centre O and radius r. The tangents to the circle at the points A and

B meet at T, and the angle AOB is 2x radians. The shaded region is bounded b gents AT and
BT, and by the minor arc AB. The perimeter of the shaded region is equal to ference of the
circle.

(i) Show that x satisfies the equation

0\
tanx = w — x. ( [3]
(ii) This equation has one root in the interval 0 < x < 17 ;y by calculation that this root lies

between 1 and 1.3. [2]

(iii) Use the iterative formula Q@
-1
a

Xor1 = 7 xn)
to determine the root correct to 2 d ces. Give the result of each iteration to 4 decimal
places. [3]
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a
Itis given that J xcosxdx= 0.5, where 0 <a < %:rr.
0

1.5-
(i) Show that a satisfies the equation sina = %. [4]

(if) Verify by calculation that a is greater than 1. [2]

(iii) Use the iterative formula

a,

. 1 {1.5=cosa,
a,  =sin | ——

to determine the value of a correct to 4 decimal places, giving the result of each iteration to
6 decimal places. [3]
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The equation x> — x> — 6 = 0 has one real root, denoted by c.
(i) Find by calculation the pair of consecutive integers between which « lies. [2]
(ii) Show that, if a sequence of values given by the iterative formula
6
s = 2
converges, then it converges to a. [2]

(iii) Use this iterative formula to determine e correct to 3 decimal places. Give the result of each
iteration to 5 decimal places. [3]
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A curve has parametric equations
x=1+3+1, y=r+1.
The point P on the curve has parameter p. Itis given that the gradient of the curve at P is 4.
(i) Show thatp = y/(2p + 3). [3]
(ii) Verify by calculation that the value of p lies between 1.8 and 2.0. [2]

(iii) Use an iterative formula based on the equation in part (i) to find the value of p correct to 2 decimal
places. Give the result of each iteration to 4 decimal places. [3]
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