

Cambridge International AS & A Level

MATHEMATICS (9709) P3

TOPIC WISE QUESTIONS + ANSWERS | COMPLETE SYLLABUS

Chapter 6

Numerical solution of equations

(a)

214. 9709_s20_qp_31 Q: 6

The diagram shows a circle with centre O and radius r. The tangents to the circle at the points A and B meet at T, and angle AOB is 2x radians. The shaded region is bounded by the tangents AT and BT, and by the minor arc AB. The area of the shaded region is equal to the area of the circle.

Show that <i>x</i> satisfies the equation $\tan x = \pi + x$.	[3]
	(0)
	40'
	<u> </u>
•	

between 1	1 and 1.4.				[2
					•••••
					••••
					••••
					••••
					••••
					•••••
				~~	
				10)	
Use the it	erative formula				
		$x_{n+1} = \tan^{-1}(\pi$	$+x_n$		
to determ places.	ine the root corre	ect to 2 decimal place	es. Give the resu	alt of each iteration to 4 dec	cim [
		201			••••
••••••		X .			•••••
		/			•••••
**					•••••
			••••••		•••••
••••••					•••••
•••••					••••
			•••••		•••••

215. 9709_s20_qp_32 Q: 9

The diagram shows the curves $y = \cos x$ and $y = \frac{k}{1+x}$, where k is a constant, for $0 \le x \le \frac{1}{2}\pi$. The curves touch at the point where x = p.

(a)	Show that <i>p</i> satisfies the equation $\tan p = \frac{1}{1+p}$. [5]
	.0
	**

(b)	Use the iterative formula $p_{n+1} = \tan^{-1} \left(\frac{1}{1 + p_n} \right)$ to determine the value of p correct to 3 decimal	1
	places. Give the result of each iteration to 5 decimal places. [3]	
		,
	<u> </u>	,
	30	
(c)	Hence find the value of k correct to 2 decimal places. [2]	ļ
		,

 $216.\ 9709_s20_qp_33\ Q:\ 6$

(b)

(a)	By sketching a suitable pair of graphs, show that the equation $x^5 = 2 + x$ has exactly on	ie real
	root.	[2]

Calification	3
Show that if a sequence of values given by the iterative formula $x_{n+1} = \frac{4x_n^5 + 2}{5x_n^4 - 1}$	
converges, then it converges to the root of the equation in part (a).	[2]
	•••••

c)	Use the iterative formula with initial value $x_1 = 1.5$ to calculate the root correct to 3 decimal places. Give the result of each iteration to 5 decimal places. [3]

217. $9709_{2} = 20_{2} = 31$ Q: 5

(a)	By sketching a suitable pair of graphs, show that the equation $\csc x = 1 + e^{-\frac{1}{2}x}$ has exactly two roots in the interval $0 < x < \pi$. [2]
	NO.
(b)	The sequence of values given by the iterative formula
	$x_{n+1} = \pi - \sin^{-1}\left(\frac{1}{e^{-\frac{1}{2}x_n} + 1}\right),$
	with initial value $x_1 = 2$, converges to one of these roots.
	Use the formula to determine this root correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]
	**

 $218.\ 9709_w20_qp_32\ Q:\ 10$

The diagram shows the curve $y = \sqrt{x} \cos x$, for $0 \le x \le \frac{3}{2}\pi$, and its minimum point M, where x = a. The shaded region between the curve and the x-axis is denoted by R.

(a)	Show that a satisfies the equation $\tan a = \frac{1}{2a}$. [3]
(b)	The sequence of values given by the iterative formula $a_{n+1} = \pi + \tan^{-1}\left(\frac{1}{2a_n}\right)$, with initial value
	$x_1 = 3$, converges to a . Use this formula to determine a correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]

CHAPTER 6. NUMERICAL SOLUTION OF EQUATIONS

Find the volume of Give your answer in	terms of π .			
•••••	•••••	······································	••••••	
				<u></u>
			• • •	
	•••••			······
••••••	•••••			
		40	,	
•••••			•••••	
		,		

		•••••••		
•••••••	•••••			
		,		

 $219.\ 9709_m19_qp_32\ Q:\ 2$

The sequence of values given by the iterative formula

$$x_{n+1} = \frac{2x_n^6 + 12x_n}{3x_n^5 + 8},$$

with initial value $x_1 = 2$, converges to α .

Use the f	l places.				
•••••	••••••				
					.0,
					0
•••••	•••••			4. C	
					<u></u>
			-		
			~ (
•••••					
State an e	equation satisfic	ed by α and hence	e find the exact val	ue of α .	
State an e	equation satisfic	ed by α and hence	e find the exact val	ue of α.	
State an e	equation satisfic	ed by α and hence	e find the exact val	ue of α.	
State an e	equation satisfic	ed by α and hence	e find the exact val	ue of α.	
State an e	equation satisfic	ed by α and hence	e find the exact val	ue of α.	
State an e	equation satisfic	ed by α and hence	e find the exact val	ue of α.	
State an e	equation satisfic	ed by α and hence	e find the exact val	ue of α.	
State an e	equation satisfic	ed by α and hence	e find the exact val	ue of α.	
State an 6	equation satisfic	ed by α and hence	e find the exact val	ue of α.	
State an 6	equation satisfic	ed by α and hence	e find the exact val	ue of α.	

(i)

220. 9709_s19_qp_31 Q: 7

The diagram shows the curves $y = 4\cos\frac{1}{2}x$ and $y = \frac{1}{4-x}$, for $0 \le x < 4$. When x = a, the tangents to the curves are perpendicular.

Show that $a = 4 - \sqrt{(2\sin\frac{1}{2}a)}$.	[4]
	9
60	
0	

3 deci
2.4
2 4
2 4
2 4
2 4
2 4
2 4
2 4
2 4
2 4
2 4
2 4
2 4
•••••

 $221.\ 9709_s19_qp_32\ Q:\ 6$

In the diagram, A is the mid-point of the semicircle with centre O and radius r. A circular arc with centre A meets the semicircle at B and C. The angle OAB is equal to x radians. The area of the shaded region bounded by AB, AC and the arc with centre A is equal to half the area of the semicircle.

(i)	Use triangle OAB to show that $AB = 2r \cos x$.	*	0	[1]
		ķ0		
(ii)	Hence show that $x = \cos^{-1} \sqrt{\left(\frac{\pi}{16x}\right)}$.			[2]
				•••••

(iii)	Verify by calculation that <i>x</i> lies between 1 and 1.5.	[2]
		•••••
		0
		7
(iv)	Use an iterative formula based on the equation in part (ii) to determine x corre	at to 2 decimal
(IV)	places. Give the result of each iteration to 5 decimal places.	[3]
	places. Give the result of each heradon to 5 decimal places.	[5]
		•••••
		•••••
	**	

222. 9709_s19_qp_33 Q: 6

The diagram shows the curve $y = x^4 - 2x^3 - 7x - 6$. The curve intersects the x-axis at the points (a, 0) and (b, 0), where a < b. It is given that b is an integer.

(i)	Find the value of b.	[1]
		402
	(3)	
(ii)	Hence show that a satisfies the equation $a = -\frac{1}{3}(2 + a^2 + a^3)$.	[4]

(iii)	Use an iterative formula based on the equation in part (ii) to determine a correct to 3 decimal places. Give the result of each iteration to 5 decimal places. [3]
	~~~
	••







223. 9709_w19_qp_31 Q: 5

The curve with	equation $y = e^{-2x}$	$x \ln(x-1)$	hae a eta	ationary r	oint when r -	- n
The curve with	equation $v = e$	m(x-1)	nas a su	monary i	x = x = x	= D.

Show that p satisfies the equation $x = 1 + \exp\left(\frac{1}{2(x-1)}\right)$ , where $\exp(x)$ denotes $e^x$ .	[
	•••••
<u> </u>	
	•••••
**	
	•••••
	•••••





•••••
2 decimal [3]
[5]







 $224.\ 9709_w19_qp_32\ Q:\ 9$ 

It is given that  $\int_0^a x \cos \frac{1}{3}x \, dx = 3$ , where the constant a is such that  $0 < a < \frac{3}{2}\pi$ .

(i) Show that a satisfies the equation

$4 - 3\cos\frac{1}{3}a$	rea
$a = \frac{4 - 3\cos\frac{1}{3}a}{\sin\frac{1}{3}a}.$	[5]
$\sin_3 a$	
	~
**	





verify by calculat	ion that <i>a</i> lies betwee	11 2.3 and 3.		
	•••••	•••••		
			•••••	
				40
			<b>^</b>	
•••••				· · · · · · · · · · · · · · · · · · ·
Use an iterative f	formula based on the	equation in part (i	i) to calculate a	correct to 3 deci
Use an iterative f places. Give the r	ormula based on the esult of each iteration	equation in part (in to 5 decimal place	i) to calculate <i>a</i> s.	correct to 3 deci
Use an iterative f places. Give the r	formula based on the esult of each iteration	equation in part (in to 5 decimal place	i) to calculate <i>a</i>	
Use an iterative f places. Give the r	formula based on the esult of each iteration	equation in part (in to 5 decimal place	i) to calculate <i>a</i>	
Use an iterative f places. Give the r	formula based on the esult of each iteration	equation in part (in the following terms of t	i) to calculate <i>a</i>	
Use an iterative f places. Give the r	formula based on the esult of each iteration	equation in part (i to 5 decimal place	i) to calculate <i>a</i>	
Use an iterative f places. Give the r	formula based on the esult of each iteration	equation in part (in to 5 decimal place	i) to calculate <i>a</i>	
Use an iterative f places. Give the r	formula based on the esult of each iteration	equation in part (in to 5 decimal place	i) to calculate <i>a</i> s.	
Use an iterative f places. Give the r	formula based on the esult of each iteration	to 5 decimal place	i) to calculate <i>a</i> s.	
Use an iterative f places. Give the r	formula based on the esult of each iteration	to 5 decimal place	S.	
Use an iterative f places. Give the r	formula based on the esult of each iteration	to 5 decimal place	S.	
Use an iterative f places. Give the r	formula based on the esult of each iteration	to 5 decimal place	S.	
Use an iterative f places. Give the r	formula based on the esult of each iteration	to 5 decimal place	S.	correct to 3 deci
Use an iterative f places. Give the r	formula based on the esult of each iteration	to 5 decimal place	S.	







225. 9709_w19_qp_33 Q: 5

(i) By sketching a suitable pair of graphs, show that the equation  $ln(x + 2) = 4e^{-x}$  has exactly one real root.

	and the second s	
(ii)	Show by calculation that this root lies between $x = 1$ and $x = 1.5$ .	[2]





$\lim_{n \to \infty} \left( \ln(x_n + 2) \right)$
Use the iterative formula $x_{n+1} = \ln\left(\frac{4}{\ln(x_n + 2)}\right)$ to determine the root correct to 2 decimal plots the result of each iteration to 4 decimal places.





horidae



 $226.\ 9709_m18_qp_32\ Q:\ 7$ 

(i) By sketching suitable graphs, show that the equation  $e^{2x} = 6 + e^{-x}$  has exactly one real root. [2]

(ii) Verify by calculation that this root lies between 0.5 and 1.



[2]



	Show that if a sequence of values given by the iterative formula
	$x_{n+1} = \frac{1}{3}\ln(1 + 6e^{x_n})$
	converges, then it converges to the root of the equation in part (i). [2]
	407
)	Use this iterative formula to calculate the root correct to 3 decimal places. Give the result of each iteration to 5 decimal places. [3]
	- 200
	- 200





## CHAPTER 6. NUMERICAL SOLUTION OF EQUATIONS

 $227.\ 9709_s18_qp_31\ Q:\ 8$ 

The	positive constant a is such that $\int_0^a x e^{-\frac{1}{2}x} dx = 2.$
(i)	Show that a satisfies the equation $a = 2\ln(a+2)$ . [5]
	<u> </u>
	- 20
	100
	***





(ii)	Verify by calculation that <i>a</i> lies between 3 and 3.5. [2]
iii)	Use an iteration based on the equation in part (i) to determine <i>a</i> correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]
	100
	••••





228. 9709_s18_qp_32 Q: 6



The diagram shows a triangle ABC in which AB = AC = a and angle  $BAC = \theta$  radians. Semicircles are drawn outside the triangle with AB and AC as diameters. A circular arc with centre A joins B and C. The area of the shaded segment is equal to the sum of the areas of the semicircles.

)	Show that $\theta = \frac{1}{2}\pi + \sin \theta$ .	[3]
	.0	
	***	
		•••••
		•••••
		•••••
	6.0	





Verify by calculation that $\theta$ lies between 2.2 and	d 2.4.
	0.
	29
Use an iterative formula based on the equation	in part (i) to determine $\theta$ correct to 2 decin
Use an iterative formula based on the equation places. Give the result of each iteration to 4 dec	n in part (i) to determine $\theta$ correct to 2 decircimal places.
Use an iterative formula based on the equation places. Give the result of each iteration to 4 dec	in part (i) to determine $\theta$ correct to 2 decircimal places.
Use an iterative formula based on the equation places. Give the result of each iteration to 4 dec	n in part (i) to determine θ correct to 2 decir cimal places.
Use an iterative formula based on the equation places. Give the result of each iteration to 4 dec	n in part (i) to determine θ correct to 2 decir cimal places.
Use an iterative formula based on the equation places. Give the result of each iteration to 4 dec	n in part (i) to determine θ correct to 2 decir cimal places.
Use an iterative formula based on the equation places. Give the result of each iteration to 4 dec	n in part (i) to determine $\theta$ correct to 2 decircimal places.
Use an iterative formula based on the equation places. Give the result of each iteration to 4 dec	n in part (i) to determine θ correct to 2 decir
Use an iterative formula based on the equation places. Give the result of each iteration to 4 dec	n in part (i) to determine θ correct to 2 decir
Use an iterative formula based on the equation places. Give the result of each iteration to 4 dec	n in part (i) to determine θ correct to 2 decir
Use an iterative formula based on the equation places. Give the result of each iteration to 4 dec	n in part (i) to determine θ correct to 2 decir
Use an iterative formula based on the equation places. Give the result of each iteration to 4 dec	n in part (i) to determine θ correct to 2 decir
Use an iterative formula based on the equation places. Give the result of each iteration to 4 dec	n in part (i) to determine θ correct to 2 decir
Use an iterative formula based on the equation places. Give the result of each iteration to 4 dec	n in part (i) to determine θ correct to 2 decincimal places.





**(i)** 

## CHAPTER 6. NUMERICAL SOLUTION OF EQUATIONS

229.  $9709_s18_qp_33$  Q: 4

The curve with equation  $y = \frac{\ln x}{3+x}$  has a stationary point at x = p.

Show that <i>p</i> satisfies the equation $\ln x = 1 + \frac{3}{x}$ .	[3]
	0-
40	



[2]



(ii) By sketching suitable graphs, show that the equation in part (i) has only one root.

(iii) It is given that the equation in part (i) can be written in the form  $x = \frac{5+x}{\ln x}$ . Use an iterative formula based on this rearrangement to determine the value of p correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]







 $230.\ 9709_w18_qp_31\ Q:\ 3$ 

(i) By sketching a suitable pair of graphs, show that the equation  $x^3 = 3 - x$  has exactly one real root.



(ii) Show that if a sequence of real values given by the iterative formula

$$x_{n+1} = \frac{2x_n^3 + 3}{3x_n^2 + 1}$$

converges, then it converges to the root of the equation in part (i).	[2]
Co	
100	
	•••••
	•••••
	•••••
	•••••





(iii)	Jse this iterative formula to determine the root correct to 3 decimal places. Give the result of
(111)	each iteration to 5 decimal places. [3]
(111)	each iteration to 5 decimal places. [3]
(222)	each iteration to 5 decimal places. [3]
()	each iteration to 5 decimal places. [3]
()	ach iteration to 5 decimal places. [3]
()	ach iteration to 5 decimal places. [3]
()	ach iteration to 5 decimal places. [3]
()	ach iteration to 5 decimal places. [3]
()	ach iteration to 5 decimal places. [3]
()	ach iteration to 5 decimal places. [3]
	ach iteration to 5 decimal places. [3]
	each iteration to 5 decimal places. [3]
	each iteration to 5 decimal places. [3]
	rach iteration to 5 decimal places. [3]
	each iteration to 5 decimal places. [3]
	ach iteration to 5 decimal places. [3]
	ach iteration to 5 decimal places. [3]
	ach iteration to 5 decimal places. [3]
	ach iteration to 5 decimal places. [3]
	ach iteration to 5 decimal places. [3]







**(i)** 

 $231.\ 9709_w18_qp_32\ Q\hbox{:}\ 5$ 

The equation of a curve is  $y = x \ln(8 - x)$ . The gradient of the curve is equal to 1 at only one point, when x = a.

Show that <i>a</i> satisfies the equation $x = 8 - \frac{8}{\ln(8 - x)}$ .	[3]
	O,
<u>(0)</u>	





Verify by calculation that <i>a</i> lies between 2.9 and 3.1.	l
	•••••
	70)
Use an iterative formula based on the equation in part (i) to determ places. Give the result of each iteration to 4 decimal places.	ine <i>a</i> correct to 2 decir
Use an iterative formula based on the equation in part (i) to determ places. Give the result of each iteration to 4 decimal places.	ine <i>a</i> correct to 2 decin
Use an iterative formula based on the equation in part (i) to determ places. Give the result of each iteration to 4 decimal places.	ine <i>a</i> correct to 2 decin
Use an iterative formula based on the equation in part (i) to determ places. Give the result of each iteration to 4 decimal places.	ine <i>a</i> correct to 2 decin
Use an iterative formula based on the equation in part (i) to determ places. Give the result of each iteration to 4 decimal places.	ine <i>a</i> correct to 2 decin
Use an iterative formula based on the equation in part (i) to determ places. Give the result of each iteration to 4 decimal places.	ine <i>a</i> correct to 2 decin
Use an iterative formula based on the equation in part (i) to determ places. Give the result of each iteration to 4 decimal places.	ine <i>a</i> correct to 2 decin
Use an iterative formula based on the equation in part (i) to determ places. Give the result of each iteration to 4 decimal places.	ine <i>a</i> correct to 2 decin
Use an iterative formula based on the equation in part (i) to determ places. Give the result of each iteration to 4 decimal places.	ine a correct to 2 decin
Use an iterative formula based on the equation in part (i) to determ places. Give the result of each iteration to 4 decimal places.	ine a correct to 2 decin
Use an iterative formula based on the equation in part (i) to determ places. Give the result of each iteration to 4 decimal places.	ine a correct to 2 decin
Use an iterative formula based on the equation in part (i) to determ places. Give the result of each iteration to 4 decimal places.	ine a correct to 2 decin
Use an iterative formula based on the equation in part (i) to determ places. Give the result of each iteration to 4 decimal places.	ine a correct to 2 decin





232. 9709_s17_qp_31 Q: 5



The diagram shows a semicircle with centre O, radius r and diameter AB. The point P on its circumference is such that the area of the minor segment on AP is equal to half the area of the minor segment on BP. The angle AOP is x radians.

(i)	Show that <i>x</i> satisfies the equation $x = \frac{1}{3}(\pi + \sin x)$ .	[3]
		. 🕜
		10
		.07
		<u></u>
	10	
	••	





(ii)	Verify by calculation that <i>x</i> lies between 1 and 1.5.	[2]
		••••
		••••
		••••
		••••
		••••
(iii)	Use an iterative formula based on the equation in part (i) to determine $x$ correct to 3 decimals $x$	nal
	places. Give the result of each iteration to 5 decimal places.	[3]
		••••
		••••
	/ 0	••••
		••••
		••••
		••••
		••••
		••••
		••••
		•







 $233.\ 9709_s17_qp_32\ Q:\ 10$ 



The diagram shows the curve  $y = x^2 \cos 2x$  for  $0 \le x \le \frac{1}{4}\pi$ . The curve has a maximum point at M where x = p.

<b>(1)</b>	Show that $p$ satisfies the equation $p = \frac{1}{2} \tan^{-1} \left( \frac{1}{p} \right)$ .	[3]
		.0
		<b>O</b>
		••••••
(ii)	Use the iterative formula $p_{n+1} = \frac{1}{2} \tan^{-1} \left( \frac{1}{p_n} \right)$ to determine the value of $p$	correct to 2 decimal
	places. Give the result of each iteration to 4 decimal places.	[3]
	**	





л-a	ixis.
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
	<u> </u>
• • • •	
••••	







234. 9709_s17_qp_33 Q: 6

Show by calculation that $lpha$ is grea	iter than 2.5.	
	<u>~</u>	
	2	
	O	
Show that, if a sequence of value	ues in the interval $0 < x < \pi$	given by the iterative form
$C_{n+1} = \pi + \tan^{-1}\left(\frac{1}{1 - x_n}\right) $ converge	es, then it converges to $\alpha$ .	
***************************************		

The equation  $\cot x = 1 - x$  has one root in the interval  $0 < x < \pi$ , denoted by  $\alpha$ .





Use this iterative formula to determine $\alpha$ correct	ct to 3 decimal places. Give the result of e
iteration to 5 decimal places.	
	. 29
***	





## CHAPTER 6. NUMERICAL SOLUTION OF EQUATIONS

 $235.\ 9709_w17_qp_31\ Q:\ 3$ 

The equation $x^3$	= 3x + 7	has one real	root.	denoted	bv	α.
The equation it	- 550 1 7	nas one rear	root,	acirotea	$\omega_J$	٠.

Show by calculation that $\alpha$ lies between 2 and 3.	[2]
	.0,
	<u> </u>





Two iterative formulae, A and B, derived from this equation are as follows:

$$x_{n+1} = (3x_n + 7)^{\frac{1}{3}},$$
 (A)

$$x_{n+1} = \frac{x_n^3 - 7}{3}. (B)$$

Each formula is used with initial value  $x_1 = 2.5$ .

)	Show that one of these formulae produces a sequence which fails to converge, and use the other formula to calculate $\alpha$ correct to 2 decimal places. Give the result of each iteration to 4 decimal places.  [4]





(i)

## CHAPTER 6. NUMERICAL SOLUTION OF EQUATIONS

236. 9709_w17_qp_32 Q: 9

It is given that  $\int_{1}^{a} x^{\frac{1}{2}} \ln x \, dx = 2$ , where a > 1.

Show that $a^{\frac{3}{2}} = \frac{7 + 2a^{\frac{5}{2}}}{3 \ln a}$ .	[5]
	.0
	0
.00	





(11)	Show by calculation that $a$ lies between 2 and 4.	[2]
		••••
		••••
		••••
iii) 1	Use the iterative formula	
	$a_{n+1} = \left(\frac{7 + 2a_n^{\frac{3}{2}}}{3\ln a_n}\right)^{\frac{2}{3}}$	
1	to determine $a$ correct to 3 decimal places. Give the result of each iteration to 5 decimal place	es. [3]
		••••
		••••
•		••••





 $237.\ 9709_m16_qp_32\ Q:\ 3$ 

The equation  $x^5 - 3x^3 + x^2 - 4 = 0$  has one positive root.

- (i) Verify by calculation that this root lies between 1 and 2. [2]
- (ii) Show that the equation can be rearranged in the form

$$x = \sqrt[3]{\left(3x + \frac{4}{x^2} - 1\right)}.$$
 [1]

(iii) Use an iterative formula based on this rearrangement to determine the positive root correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]







238. 9709_s16_qp_31 Q: 6

(i) By sketching a suitable pair of graphs, show that the equation

$$5e^{-x} = \sqrt{x}$$

has one root. [2]

(ii) Show that, if a sequence of values given by the iterative formula

$$x_{n+1} = \frac{1}{2} \ln \left( \frac{25}{x_n} \right)$$

converges, then it converges to the root of the equation in part (i).

[2]

(iii) Use this iterative formula, with initial value  $x_1 = 1$ , to calculate the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.







239.  $9709_s16_qp_32$  Q: 8



The diagram shows the curve  $y = \csc x$  for  $0 < x < \pi$  and part of the curve  $y = e^{-x}$ . When x = a, the tangents to the curves are parallel.

(i) By differentiating 
$$\frac{1}{\sin x}$$
, show that if  $y = \csc x$  then  $\frac{dy}{dx} = -\csc x \cot x$ . [3]

(ii) By equating the gradients of the curves at x = a, show that

$$a = \tan^{-1}\left(\frac{e^a}{\sin a}\right).$$
 [2]

- (iii) Verify by calculation that *a* lies between 1 and 1.5. [2]
- (iv) Use an iterative formula based on the equation in part (ii) to determine a correct to 3 decimal places. Give the result of each iteration to 5 decimal places. [3]







 $240.\ 9709_s16_qp_33\ Q:\ 6$ 

The curve with equation  $y = x^2 \cos \frac{1}{2}x$  has a stationary point at x = p in the interval  $0 < x < \pi$ .

- (i) Show that p satisfies the equation  $\tan \frac{1}{2}p = \frac{4}{p}$ . [3]
- (ii) Verify by calculation that p lies between 2 and 2.5. [2]
- (iii) Use the iterative formula  $p_{n+1} = 2 \tan^{-1} \left( \frac{4}{p_n} \right)$  to determine the value of p correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]







241. 9709_w16_qp_31 Q: 6

(i) By sketching a suitable pair of graphs, show that the equation

$$\csc \frac{1}{2}x = \frac{1}{3}x + 1$$

has one root in the interval  $0 < x \le \pi$ .

[2]

(ii) Show by calculation that this root lies between 1.4 and 1.6.

- [2]
- (iii) Show that, if a sequence of values in the interval  $0 < x \le \pi$  given by the iterative formula

$$x_{n+1} = 2\sin^{-1}\left(\frac{3}{x_n + 3}\right)$$

converges, then it converges to the root of the equation in part (i).

[2]

Paloa Calification (iv) Use this iterative formula to calculate the root correct to 3 decimal places. Give the result of each iteration to 5 decimal places. [3]





242. 9709_w16_qp_33 Q: 9



The diagram shows the curves  $y = x \cos x$  and  $y = \frac{k}{x}$ , where k is a constant, for  $0 < x \le \frac{1}{2}\pi$ . The curves touch at the point where x = a.

- (i) Show that a satisfies the equation  $\tan a = \frac{2}{a}$ . [5]
- (ii) Use the iterative formula  $a_{n+1} = \tan^{-1} \left( \frac{2}{a_n} \right)$  to determine a correct to 3 decimal places. Give the result of each iteration to 5 decimal places. [3]
- (iii) Hence find the value of k correct to 2 decimal places. [2]







 $243.\ 9709_s15_qp_31\ Q:\ 10$ 



The diagram shows part of the curve with parametric equations

$$x = 2\ln(t+2),$$
  $y = t^3 + 2t + 3.$ 

- (i) Find the gradient of the curve at the origin.
- (ii) At the point *P* on the curve, the value of the parameter is *p*. It is given that the gradient of the curve at *P* is  $\frac{1}{2}$ .

(a) Show that 
$$p = \frac{1}{3p^2 + 2} - 2$$
. [1]

(b) By first using an iterative formula based on the equation in part (a), determine the coordinates of the point P. Give the result of each iteration to 5 decimal places and each coordinate of P correct to 2 decimal places.[4]



[5]



 $244.\ 9709_s15_qp_32\ Q:\ 5$ 



The diagram shows a circle with centre O and radius r. The tangents to the circle at the points A and B meet at T, and the angle AOB is 2x radians. The shaded region is bounded by the tangents AT and BT, and by the minor arc AB. The perimeter of the shaded region is equal to the circumference of the circle.

(i) Show that x satisfies the equation

$$\tan x = \pi - x. \tag{3}$$

- (ii) This equation has one root in the interval  $0 < x < \frac{1}{2}\pi$ . Verify by calculation that this root lies between 1 and 1.3.
- (iii) Use the iterative formula

$$x_{n+1} = \tan^{-1}(\pi - x_n)$$

to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]







245. 9709 s15 qp 33 Q: 6

It is given that  $\int_0^a x \cos x \, dx = 0.5$ , where  $0 < a < \frac{1}{2}\pi$ .

- (i) Show that *a* satisfies the equation  $\sin a = \frac{1.5 \cos a}{a}$ . [4]
- (ii) Verify by calculation that a is greater than 1. [2]
- (iii) Use the iterative formula

$$a_{n+1} = \sin^{-1}\left(\frac{1.5 - \cos a_n}{a_n}\right)$$

to determine the value of *a* correct to 4 decimal places, giving the result of each iteration to 6 decimal places. [3]



[2]



 $246.\ 9709_w15_qp_31\ \ Q:\ 4$ 

The equation  $x^3 - x^2 - 6 = 0$  has one real root, denoted by  $\alpha$ .

- (i) Find by calculation the pair of consecutive integers between which  $\alpha$  lies. [2]
- (ii) Show that, if a sequence of values given by the iterative formula

$$x_{n+1} = \sqrt{\left(x_n + \frac{6}{x_n}\right)}$$

converges, then it converges to  $\alpha$ .

(iii) Use this iterative formula to determine  $\alpha$  correct to 3 decimal places. Give the result of each iteration to 5 decimal places.







247. 9709_w15_qp_33 Q: 4

A curve has parametric equations

$$x = t^2 + 3t + 1,$$
  $y = t^4 + 1.$ 

The point P on the curve has parameter p. It is given that the gradient of the curve at P is 4.

(i) Show that 
$$p = \sqrt[3]{(2p+3)}$$
. [3]

- (ii) Verify by calculation that the value of p lies between 1.8 and 2.0. [2]
- (iii) Use an iterative formula based on the equation in part (i) to find the value of *p* correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]



